提醒:點(diǎn)這里加小編微信(領(lǐng)取免費(fèi)資料、獲取最新資訊、解決考教師一切疑問(wèn)?。?/p>

函數(shù)是中學(xué)數(shù)學(xué)的核心內(nèi)容,函數(shù)也是一個(gè)重點(diǎn)和難點(diǎn)。欣瑞教育專家通過(guò)函數(shù)自身的對(duì)稱性和不同函數(shù)之間的對(duì)稱性這兩個(gè)方面來(lái)探討函數(shù)與對(duì)稱有關(guān)的性質(zhì)。

一、函數(shù)自身的對(duì)稱性探究

定理1、函數(shù) y = f (x)的圖像關(guān)于點(diǎn)A (a ,b)對(duì)稱的充要條件是

f (x) + f (2a-x) = 2b

證明:(必要性)設(shè)點(diǎn)P(x ,y)是y = f (x)圖像上任一點(diǎn),∵點(diǎn)P( x ,y)關(guān)于點(diǎn)A (a ,b)的對(duì)稱點(diǎn)P‘(2a-x,2b-y)也在y = f (x)圖像上,∴ 2b-y = f (2a-x)

即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得證。

(充分性)設(shè)點(diǎn)P(x0,y0)是y = f (x)圖像上任一點(diǎn),則y0 = f (x0)

∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。

故點(diǎn)P‘(2a-x0,2b-y0)也在y = f (x) 圖像上,而點(diǎn)P與點(diǎn)P‘關(guān)于點(diǎn)A (a ,b)對(duì)稱,充分性得征。

推論:函數(shù) y = f (x)的圖像關(guān)于原點(diǎn)O對(duì)稱的充要條件是f (x) + f (-x) = 0

定理2、 函數(shù) y = f (x)的圖像關(guān)于直線x = a對(duì)稱的充要條件是

f (a +x) = f (a-x) 即f (x) = f (2a-x) (證明留給讀者)

推論:函數(shù) y = f (x)的圖像關(guān)于y軸對(duì)稱的充要條件是f (x) = f (-x)

定理3、①若函數(shù)y = f (x) 圖像同時(shí)關(guān)于點(diǎn)A (a ,c)和點(diǎn)B (b ,c)成中心對(duì)稱(a≠b),則y = f (x)是周期函數(shù),且2| a-b|是其一個(gè)周期。

②若函數(shù)y = f (x) 圖像同時(shí)關(guān)于直線x = a 和直線x = b成軸對(duì)稱 (a≠b),則y = f (x)是周期函數(shù),且2| a-b|是其一個(gè)周期。

③若函數(shù)y = f (x)圖像既關(guān)于點(diǎn)A (a ,c) 成中心對(duì)稱又關(guān)于直線x =b成軸對(duì)稱(a≠b),則y = f (x)是周期函數(shù),且4| a-b|是其一個(gè)周期。

①②的證明留給讀者,以下給出③的證明:

∵函數(shù)y = f (x)圖像既關(guān)于點(diǎn)A (a ,c) 成中心對(duì)稱,

∴f (x) + f (2a-x) =2c,用2b-x代x得:

f (2b-x) + f [2a-(2b-x) ] =2c………………(*)

又∵函數(shù)y = f (x)圖像直線x =b成軸對(duì)稱,

∴ f (2b-x) = f (x)代入(*)得:

f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得

f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得:

f (x) = f [4(a-b) + x],故y = f (x)是周期函數(shù),且4| a-b|是其一個(gè)周期。

提醒:點(diǎn)這里加小編微信(領(lǐng)取免費(fèi)資料、獲取最新資訊、解決考教師一切疑問(wèn)!)