提醒:點這里加小編微信(領取免費資料、獲取最新資訊、解決考教師一切疑問!)
中學數(shù)學的基本知識分三類:一類是純粹數(shù)的知識,如實數(shù)、代數(shù)式、方程(組)、不等式(組)、函數(shù)等;一類是關于純粹形的知識,如平面幾何、立體幾何等;一類是關于數(shù)形結合的知識,主要體現(xiàn)是解析幾何。
數(shù)形結合是一個數(shù)學思想方法,包含“以形助數(shù)”和“以數(shù)輔形”兩個方面,其應用大致可以分為兩種情形:①借助形的生動和直觀性來闡明數(shù)之間的聯(lián)系, 即以形作為手段,數(shù)為目的,比如應用函數(shù)的圖像來直觀地說明函數(shù)的性質(zhì);②借助于數(shù)的精確性和規(guī)范嚴密性來闡明形的某些屬性,即以數(shù)作為手段,形作為目 的,如應用曲線的方程來精確地闡明曲線的幾何性質(zhì)。
恩格斯曾說過:“數(shù)學是研究現(xiàn)實世界的量的關系與空間形式的科學.”數(shù)形結合就是根據(jù)數(shù)學問題的條件和結論之間的內(nèi)在聯(lián)系,既分析其代數(shù)意義,又揭 示其幾何直觀,使數(shù)量關的精確刻劃與空間形式的直觀形象巧妙、和諧地結合在一起,充分利用這種結合,尋找解題思路,使問題化難為易、化繁為簡,從而得到解 決。“數(shù)”與“形”是一對矛盾,宇宙間萬物無不是“數(shù)”和“形”的矛盾的統(tǒng)一。華羅庚先生說過:數(shù)缺形時少直觀,形少數(shù)時難入微,數(shù)形結合百般好,隔裂分 家萬事休。
數(shù)形結合的思想,其實質(zhì)是將抽象的數(shù)學語言與直觀的圖像結合起來,關鍵是代數(shù)問題與圖形之間的相互轉化,它可以使代數(shù)問題幾何化,幾何問題代數(shù)化. 在運用數(shù)形結合思想分析和解決問題時,要注意三點:第一要徹底明白一些概念和運算的幾何意義以及曲線的代數(shù)特征,對數(shù)學題目中的條件和結論既分析其幾何意 義又分析其代數(shù)意義;第二是恰當設參、合理用參,建立關系,由數(shù)思形,以形想數(shù),做好數(shù)形轉化;第三是正確確定參數(shù)的取值范圍.
數(shù)學中的知識,有的本身就可以看作是數(shù)形的結合.如:銳角三角函數(shù)的定義是借助于直角三角形來定義的;任意角的三角函數(shù)是借助于直角坐標系或單位圓來定義的。
一、再現(xiàn)題組
提醒:點這里加小編微信(領取免費資料、獲取最新資訊、解決考教師一切疑問?。?/p>